Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

K. Udaya Lakshmi, ${ }^{\text {a }}$ *

S. Thamotharan, ${ }^{\text {b }}$ M. Srinivasan, ${ }^{\text {c }}$
K. Ramamurthi ${ }^{\text {a }}$ and
B. Varghese ${ }^{c}$
${ }^{\text {a }}$ School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India, and ${ }^{\text {c }}$ Sophisticated Analytical Instrument Facility, Indian Institute of Technology Madras, Chennai 600 036, India

Correspondence e-mail:
udayalakshmi@gmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.146$
Data-to-parameter ratio $=11.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Nitrocinnamic acid

The title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{4}$, forms centrosymmetric dimers through intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the crystal structure. The nitro group deviates slightly from coplanarity with the benzene ring. The benzene ring and the carboxylic acid group are in an E configuration about the ethylenic double bond.

Comment

Various cinnamic acid derivatives form substrate intermediates with the enzyme papain (Huber, 1985). m-Nitrocinnamic acid crystallizes in two modifications and the unitcell dimensions of these polymorphs have been reported previously (Schmidt, 1964). In this paper, we report the crystal structure of the β polymorph of m-nitrocinnamic acid, (I).

(I)

A perspective view of (I), with the atomic numbering scheme, is shown in Fig. 1. The bond lengths and angles agree well with literature values (Allen et al., 1987). The C1-C7-C8-C9 torsion angle of 179.5 (2) ${ }^{\circ}$ indicates that the benzene ring and the carboxylic acid group are in an E configuration about the $\mathrm{C} 7=\mathrm{C} 8$ bond and the propenoic acid moiety exists in an extended conformation. The alkenecarbonyl conforma-

Figure 1
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Received 30 September 2005
Accepted 6 October 2005
Online 12 October 2005
tion $\left[\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 9=-2.5(4)^{\circ}\right]$ is synperiplanar, which is the most common conformation for trans-cinnamic acids (Leiserowitz, 1976).

The dihedral angle between the 3-nitro group and the benzene ring is $8.9(9)^{\circ}$. In a related structure, viz. p-nitrocinnamic acid (Kageyama et al., 1993), the nitro group is coplanar (2.2°) with the benzene ring. With respect to the plane of the benzene ring, the 3-nitro group is oriented at an angle of 45.3° in 4-dimethylamino-3-nitrocinnamic acid (Huber, 1985), 3.6° in 3,5 -dinitrocinnamic acid and 2.3° in the 3,5-dinitrocinnamic acid 2,5-dimethoxycinnamic acid complex (Desiraju \& Sharma, 1991), 3.0° in the 3,5 -dinitrocinnamic acid 4-(N, N-dimethylamino)benzoic acid complex and 6.1° in the 3,5-dinitrocinnamic acid 4-(N, N-dimethylamino) cinnamic acid complex (Sharma et al., 1993).

The angle between the mean plane of the benzene ring and the mean plane of the propenoic acid moiety is $3.5(7)^{\circ}$ in (I) and 2.6° in 4-dimethylamino-3-nitrocinnamic acid (Huber, 1985). The corresponding angles in 4 -chlorocinnamic acid (Glusker et al., 1975), 4-iodocinnamic acid (Goud et al., 1993), p-nitrocinnamic acid (Kageyama et al., 1993), 3,5-dinitrocinnamic acid and the 3,5-dinitrocinnamic acid 2,5dimethoxycinnamic acid complex (Desiraju \& Sharma, 1991) are $14.1,13.8,4.7,28.7$ and 6.4°, respectively. In the $3,5-$ dinitrocinnamic acid 4 -(N, N-dimethylamino)cinnamic acid complex, the propenoic acid group is twisted by 7.6° out of the mean plane of the benzene ring (Sharma et al., 1993).

In the crystalline state, the molecules form $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers across an inversion centre (Table 1). These dimers are stacked along the shortest cell axis and lead to an $R_{2}^{2}(8)$ motif (Fig. 2) (Bernstein et al., 1995).

Experimental

The title compound, (I), was prepared by dissolving m-nitrobenzaldehyde ($6 \mathrm{~g}, 0.04 \mathrm{~mol}$) and malonic acid ($8.3 \mathrm{~g}, 0.08 \mathrm{~mol}$) in a mixture of 5 ml of pyridine and 0.25 ml of piperidine. The solution was allowed to reflux for 1 h , with rapid evolution of CO_{2}. The resulting title compound was recrystallized from ethanol.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{NO}_{4}$
$M_{r}=193.16$
Monoclinic, P_{2} / n
$a=3.7756(2) \AA$
$b=9.4584(13) \AA$
$c=24.295(4) \AA$
$\beta=90.875(8){ }^{\circ}$
$V=867.52(18) \AA^{3}$
$Z=4$
$D_{x}=1.479 \mathrm{Mg} \mathrm{m}^{-3}$
Cu K $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=20-30^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colourless
$0.30 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer $\omega-2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.751, T_{\text {max }}=0.823$ 1733 measured reflections 1478 independent reflections 1068 reflections with $I>2 \sigma(I)$

Figure 2
The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded (dashed lines) dimer in the structure of (I).

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0726 P)^{2}\right.$
$w R\left(F^{2}\right)=0.146$
$S=1.03$
$\begin{aligned} &+0.3649 P] \\ & \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\end{aligned}$
1478 reflections
129 parameters
H -atom parameters constrained
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.30 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0054 (11)

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 10-\mathrm{H} 10 \cdots \mathrm{O} 9^{\mathrm{i}}$	0.82	1.83	$2.636(3)$	169
Symmetry code: (i) $-x+1,-y-1,-z$.				

All the H atoms were placed in idealized positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.82 \AA$) and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

KU and KR thank Professor R. Jeyaraman and Dr K. Sarkunam, School of Chemistry, Bharathidasan University, Tiruchirappalli, India, for providing the chemicals.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Desiraju, G. R. \& Sharma, C. V. K. (1991). J. Chem. Soc. Chem. Commun. pp. 1239-1241.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Glusker, J. P., Zacharias, D. E. \& Carrell, H. L. (1975). J. Chem. Soc. Perkin Trans. 2, pp. 68-74.
Goud, B. S., Pathaneni, S. S. \& Desiraju, G. R. (1993). Acta Cryst. C49, 11071111.

Huber, C. P. (1985). Acta Cryst. C41, 1076-1079.

organic papers

Kageyama, Y., Iwamoto, T., Haisa, M. \& Kashino, S. (1993). Acta Cryst. C49, 833-834.
Leiserowitz, L. (1976). Acta Cryst. B32, 775-802.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.
Sharma, C. V. K., Panneerselvam, K., Pilati, T. \& Desiraju, G. R. (1993). J Chem. Soc. Perkin Trans. 2, pp. 2209-2216.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

